Consider next code:
fn get_ref<'a, R>(slice: &'a Vec<i32>, f: fn(&'a Vec<i32>) -> R) -> R
where
R: 'a,
{
f(slice)
}
fn main() {
let v = [1,2,3,4,5,6];
let iter = get_ref(&v, |x| x.iter().skip(1).take(2));
println!("{:?}", iter.collect::<Vec<_>>());
}
I create some static
variable, then apply some function to its reference and get a result.
It seems to work totally fine. At least it successfully compiles.
Now I am trying to add next level of abstraction. And things are getting weird...
fn owned<'a, R>(owner: Vec<i32>, f: fn(&'a Vec<i32>) -> R)
where
R: 'a,
{
let _ = get_ref(&owner, f); // error occurs here
// `owner` does not live long enough.
}
// get_ref is the same as in the first example
fn get_ref<'a, R>(slice: &'a Vec<i32>, f: fn(&'a Vec<i32>) -> R) -> R
where
R: 'a,
{
f(slice)
}
fn main() {
let v = [1,2,3,4,5,6];
owned(v, |x| x.iter().skip(1).take(2));
}
For me it looks like pretty the same code. But Rust fails to compile it. I really don't understand why this is happening and how should I rewrite my code to compile.